Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Deep convolutional neural networks (CNNs) have achieved state-of-the-art performances for multi-class segmentation of medical images. However, a common problem when dealing with large, high resolution 3D data is that the volumes input into the deep CNNs has to be either cropped or downsampled due to limited memory capacity of computing devices. These operations can lead to loss of resolution and class imbalance in the input data batches, thus downgrade the performances of segmentation algorithms. Inspired by the architecture of image super-resolution CNN (SRCNN), we propose a two-stage modified U-Net framework that simultaneously learns to detect a ROI within the full volume and to classify voxels without losing the original resolution. Experiments on a variety of multi-modal 3D cardiac images have demonstrated that this framework shows better segmentation performances than state-of-the-art Deep CNNs with trained with the same similarity metrics.

Original publication





Publication Date



11395 LNCS


191 - 199