Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Mitral annular calcification (MAC) is associated with cardiovascular events and mitral valve dysfunction. However, the underlying pathophysiology remains incompletely understood. In this prospective longitudinal study, we used a multimodality approach including positron emission tomography, computed tomography, and echocardiography to investigate the pathophysiology of MAC and assess factors associated with disease activity and progression. METHODS: A total of 104 patients (age 72±8 years, 30% women) with calcific aortic valve disease, therefore predisposed to MAC, underwent 18F-sodium fluoride (calcification activity) and 18F-Fluorodeoxyglucose (inflammation activity) positron emission tomography, computed tomography calcium scoring, and echocardiography. Sixty patients underwent repeat computed tomography and echocardiography after 2 years. RESULTS: MAC (mitral annular calcium score >0) was present in 35 (33.7%) patients who had increased 18F-fluoride (tissue-to-background ratio, 2.32 [95% CI, 1.81-3.27] versus 1.30 [1.22-1.49]; P<0.001) and 18F-Fluorodeoxyglucose activity (tissue-to-background ratio, 1.44 [1.37-1.58] versus 1.17 [1.12-1.24]; P<0.001) compared with patients without MAC. MAC activity (18F-fluoride uptake) was closely associated with the local calcium score and 18F-Fluorodeoxyglucose uptake, as well as female sex and renal function. Similarly, MAC progression was closely associated with local factors, in particular, baseline MAC. Traditional cardiovascular risk factors and calcification activity in bone or remote atherosclerotic areas were not associated with disease activity nor progression. CONCLUSIONS: MAC is characterized by increased local calcification activity and inflammation. Baseline MAC burden was associated with disease activity and the rate of subsequent progression. This suggests a self-perpetuating cycle of calcification and inflammation that may be the target of future therapeutic interventions.

Original publication

DOI

10.1161/CIRCIMAGING.118.008513

Type

Journal article

Journal

Circ cardiovasc imaging

Publication Date

02/2019

Volume

12

Keywords

disease progression, inflammation, mitral valve, positron emission tomography computed tomography, Aged, Aged, 80 and over, Aortic Valve, Aortic Valve Stenosis, Calcinosis, Computed Tomography Angiography, Coronary Angiography, Disease Progression, Echocardiography, Female, Heart Valve Diseases, Humans, Incidence, Male, Middle Aged, Mitral Valve, Multimodal Imaging, Positron Emission Tomography Computed Tomography, Predictive Value of Tests, Prevalence, Prognosis, Time Factors