Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RATIONALE: Exposure to combustion-derived air pollution is associated with an early (1-2 h) and sustained (24 h) rise in cardiovascular morbidity and mortality. We have previously demonstrated that inhalation of diesel exhaust causes an immediate (within 2 h) impairment of vascular and endothelial function in humans. OBJECTIVES: To investigate the vascular and systemic effects of diesel exhaust in humans 24 hours after inhalation. METHODS: Fifteen healthy men were exposed to diesel exhaust (particulate concentration, 300 microg/m(3)) or filtered air for 1 hour in a double-blind, randomized, crossover study. Twenty-four hours after exposure, bilateral forearm blood flow, and inflammatory and fibrinolytic markers were measured before and during unilateral intrabrachial bradykinin (100-1,000 pmol/min), acetylcholine (5-20 microg/min), sodium nitroprusside (2-8 microg/min), and verapamil (10-100 microg/min) infusions. MEASUREMENTS AND MAIN RESULTS: Resting forearm blood flow, blood pressure, and basal fibrinolytic markers were similar 24 hours after either exposure. Diesel exhaust increased plasma cytokine concentrations (tumor necrosis factor-alpha and interleukin-6, p < 0.05 for both) but appeared to reduce acetylcholine (p = 0.01), and bradykinin (p = 0.08) induced forearm vasodilatation. In contrast, there were no differences in either endothelium-independent (sodium nitroprusside and verapamil) vasodilatation or bradykinin-induced acute plasma tissue plasminogen activator release. CONCLUSIONS: Twenty-four hours after diesel exposure, there is a selective and persistent impairment of endothelium-dependent vasodilatation that occurs in the presence of mild systemic inflammation. These findings suggest that combustion-derived air pollution may have important systemic and adverse vascular effects for at least 24 hours after exposure.

Original publication




Journal article


Am j respir crit care med

Publication Date





395 - 400


Acetylcholine, Adolescent, Adult, Antioxidants, Biomarkers, Bradykinin, Cross-Over Studies, Double-Blind Method, Endothelium, Vascular, Environmental Exposure, Forearm, Humans, Inflammation, Interleukin-6, Male, Nitroprusside, P-Selectin, Regional Blood Flow, Tumor Necrosis Factor-alpha, Vasodilation, Vasodilator Agents, Vehicle Emissions, Verapamil