Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To investigate the water diffusion tensor properties of ex vivo tissue in the fibroid uterus, including the influence of degeneration, and the relevance of the principal eigenvector orientation to the underlying tissue structure. MATERIALS AND METHODS: Following hysterectomy, high-resolution structural T(2) -weighted and diffusion tensor magnetic resonance imaging (DT-MRI) were performed on nine uteri at 7 T. Mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector orientation were measured in myometrium and in myxoid and dense tissue in fibroids. Imaging data and measurements of water diffusion parameters were compared with histopathology findings. RESULTS: The nine uteri yielded 23 fibroids. MD was 50% higher in regions of myxoid degeneration compared to dense fibroid tissue (P = 0.001), while myometrium was intermediate in value (dense fibroid tissue, P = 0.15; myxoid degeneration, P = 0.23). FA was lower in dense fibroid tissue than in myometrium (P = 3 × 10(-5) ), but higher than in myxoid tissue (P = 0.003). Principal eigenvector orientation corresponded qualitatively with that of uterine smooth muscle fibers. CONCLUSION: The water diffusion tensor measured ex vivo in the fibroid uterus is a sensitive probe of tissue type, myxoid degeneration, and morphology.

Original publication

DOI

10.1002/jmri.22793

Type

Journal article

Journal

J magn reson imaging

Publication Date

12/2011

Volume

34

Pages

1445 - 1451

Keywords

Adult, Anisotropy, Diffusion Tensor Imaging, Female, Humans, Leiomyoma, Middle Aged