Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: The pathophysiology of aortic stenosis shares many similarities with atherosclerosis and skeletal bone formation. Using non-invasive imaging, we compared aortic valve calcification and inflammation activity with that measured in atherosclerosis and bone. METHODS AND RESULTS: Positron emission and computed tomography was performed using 18F-sodium fluoride (18F-NaF, calcification) and 18F-fluorodeoxyglucose (18F-FDG, inflammation) in 101 patients with calcific aortic valve disease (81 aortic stenosis and 20 aortic sclerosis). Calcium scores and positron emission tomography tracer activity (tissue-to-background ratio; TBR) were measured in the aortic valve, coronary arteries, thoracic aorta, and bone. Over 90% of the cohort had coexistent calcific atheroma, yet correlations between calcium scores were weak or absent (valve vs. aorta r(2) = 0.015, P = 0.222; valve vs. coronaries r(2) = 0.039, P = 0.049) as were associations between calcium scores and bone mineral density (BMD vs. valve r(2) = 0.000, P = 0.766; vs. aorta r(2) = 0.052, P = 0.025; vs. coronaries r(2) = 0.016, P = 0.210). 18F-NaF activity in the valve was 28% higher than in the aorta (TBR: 2.66 ± 0.84 vs. 2.11 ± 0.31, respectively, P < 0.001) and correlated more strongly with the severity of aortic stenosis (r(2) = 0.419, P < 0.001) than 18F-NaF activity outwith the valve (valve vs. aorta r(2) = 0.167, P < 0.001; valve vs. coronary arteries r(2) = 0.174, P < 0.001; valve vs. bone r(2) = 0.001, P = 0.806). In contrast, 18F-FDG activity was lower in the aortic valve than the aortic atheroma (TBR: 1.56 ± 0.21 vs. 1.81 ± 0.24, respectively, P < 0.001) and more closely associated with uptake outwith the valve (valve vs. aorta r(2) = 0.327, P < 0.001). CONCLUSION: In patients with aortic stenosis, disease activity appears to be determined by local calcific processes within the valve that are distinct from atherosclerosis and skeletal bone metabolism.

Original publication

DOI

10.1093/eurheartj/eht034

Type

Journal article

Journal

Eur heart j

Publication Date

06/2013

Volume

34

Pages

1567 - 1574

Keywords

Aortic stenosis, Atherosclerosis, Calcification, Inflammation, Positron emission tomography, Aged, Aortic Valve, Aortic Valve Stenosis, Atherosclerosis, Bone Density, Calcinosis, Female, Fluorodeoxyglucose F18, Humans, Male, Osteitis, Positron-Emission Tomography, Radiopharmaceuticals, Sodium Fluoride, Tomography, X-Ray Computed, Vasculitis