Controlled exposures to air pollutants and risk of cardiac arrhythmia.
Langrish JP., Watts SJ., Hunter AJ., Shah ASV., Bosson JA., Unosson J., Barath S., Lundbäck M., Cassee FR., Donaldson K., Sandström T., Blomberg A., Newby DE., Mills NL.
BACKGROUND: Epidemiological studies have reported associations between air pollution exposure and increases in cardiovascular morbidity and mortality. Exposure to air pollutants can influence cardiac autonomic tone and reduce heart rate variability, and may increase the risk of cardiac arrhythmias, particularly in susceptible patient groups. OBJECTIVES: We investigated the incidence of cardiac arrhythmias during and after controlled exposure to air pollutants in healthy volunteers and patients with coronary heart disease. METHODS: We analyzed data from 13 double-blind randomized crossover studies including 282 participants (140 healthy volunteers and 142 patients with stable coronary heart disease) from whom continuous electrocardiograms were available. The incidence of cardiac arrhythmias was recorded for each exposure and study population. RESULTS: There were no increases in any cardiac arrhythmia during or after exposure to dilute diesel exhaust, wood smoke, ozone, concentrated ambient particles, engineered carbon nanoparticles, or high ambient levels of air pollution in either healthy volunteers or patients with coronary heart disease. CONCLUSIONS: Acute controlled exposure to air pollutants did not increase the short-term risk of arrhythmia in participants. Research employing these techniques remains crucial in identifying the important pathophysiological pathways involved in the adverse effects of air pollution, and is vital to inform environmental and public health policy decisions.