Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transmembrane proteins are receptors, enzymes, transporters and ion channels that are instrumental in regulating a variety of cellular activities, such as signal transduction and cell communication. Despite tremendous progress in computational capacities to support protein research, there is still a significant gap in the availability of specialized computational analysis toolkits for transmembrane protein research. Here, we introduce TMKit, an open-source Python programming interface that is modular, scalable and specifically designed for processing transmembrane protein data. TMKit is a one-stop computational analysis tool for transmembrane proteins, enabling users to perform database wrangling, engineer features at the mutational, domain and topological levels, and visualize protein-protein interaction interfaces. In addition, TMKit includes seqNetRR, a high-performance computing library that allows customized construction of a large number of residue connections. This library is particularly well suited for assigning correlation matrix-based features at a fast speed. TMKit should serve as a useful tool for researchers in assisting the study of transmembrane protein sequences and structures. TMKit is publicly available through https://github.com/2003100127/tmkit and https://tmkit-guide.herokuapp.com/doc/overview.

Original publication

DOI

10.1093/bib/bbad288

Type

Journal article

Journal

Brief bioinform

Publication Date

17/08/2023

Keywords

bioinformatics, feature extraction, protein interaction interfaces, sequence analysis, structural biology, transmembrane proteins