Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Athlete injury risk assessment and management is an important, yet challenging task for sport and exercise medicine professionals. A common approach to injury risk screening is to stratify athletes into risk groups based on their performance on a test relative to a cut-off threshold. However, one potential reason for ineffective injury prevention efforts is the over-reliance on identifying these 'at-risk' groups using arbitrary cut-offs for these tests and measures. The purpose of this commentary is to discuss the conceptual and technical issues related to the use of a cut-off in both research and clinical practice. CLINICAL QUESTION: How can we better assess and interpret clinical tests or measures to enable a more effective injury risk assessment in athletes? KEY RESULTS: Cut-offs typically lack strong biologic plausibility to support them; and are typically derived in a data-driven manner and thus not generalizable to other samples. When a cut-off is used in analyses, information is lost, leading to potentially misleading results and less accurate injury risk prediction. Dichotomizing a continuous variable using a cut-off should be avoided. Using continuous variables on its original scale is advantageous because information is not discarded, outcome prediction accuracy is not lost, and personalized medicine can be facilitated. CLINICAL APPLICATION: Researchers and clinicians are encouraged to analyze and interpret the results of tests and measures using continuous variables and avoid relying on singular cut-offs to guide decisions. Injury risk can be predicted more accurately when using continuous variables in their natural form. A more accurate risk prediction will facilitate personalized approaches to injury risk mitigation and may lead to a decline in injury rates. LEVEL OF EVIDENCE: 5.

Original publication

DOI

10.26603/001c.122644

Type

Journal

Int j sports phys ther

Publication Date

2024

Volume

19

Pages

1151 - 1164

Keywords

cut-off, dichotomization, injury prevention, personalized medicine, prediction, risk stratification