Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Simulation training can develop surgical procedural skills in a safe environment. Able to offer high-intensity exposure, simulation is increasingly important as working time for surgeons becomes more protected. Materials used in simulated tendon repair play a critical role in the fidelity and face validity of the model. Although organic materials like porcine tendon are commonly used, non-organic materials offer advantages such as accessibility, reproducibility, cost-effectiveness and ease of use without the need for special licences or facilities. This study aims to establish the face, content and concurrent validity of using a novel silicone material in a simulated tendon repair model. METHODS: Three tendon models, bathroom silicone sealant, DragonSkin® silicone and organic porcine tendons, were evaluated for concurrent validity through mechanical load to failure testing. Face and content validity were assessed, following participant repair of a DragonSkin® tendon, using a 5-point Likert scale for five clinically relevant parameters. RESULTS: Significant differences in load to failure were observed among bathroom sealant, DragonSkin® and porcine tendon (11.1N, 31.7N and 56.2N; p < 0.001). Participant feedback on the DragonSkin® tendon indicated that it was suitably representative, easy to use and useful for training (agreement rates 58%, 75% and 83%, respectively). However, participants noted that the model did not handle or glide like human tendon (both 8% agreement). CONCLUSION: DragonSkin® silicone is an adaptable and valid material for simulated tendon repair models. It is low cost, widely available and shows promise as a training tool. Future research will focus on exploring its effectiveness in training settings.

Original publication

DOI

10.1308/rcsann.2024.0064

Type

Journal

Ann r coll surg engl

Publication Date

24/09/2024

Keywords

Education Q000193, Silicones D012828, Simulation Training D000066908, Tendon D013710