Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Understanding the genetic basis of COVID-19 vaccine seroconversion is crucial to study the role of genetics on vaccine effectiveness. In our study, we used UK Biobank data to find the genetic determinants of COVID-19 vaccine-induced seropositivity and breakthrough infections. We conducted four genome-wide association studies among vaccinated participants for COVID-19 vaccine seroconversion and breakthrough susceptibility and severity. Our findings confirmed a link between the HLA region and seroconversion after the first and second doses. Additionally, we identified 10 genomic regions associated with breakthrough infection (SLC6A20, ST6GAL1, MUC16, FUT6, MXI1, MUC4, HMGN2P18-KRTCAP2, NFKBIZ and APOC1), and one with breakthrough severity (APOE). No significant evidence of genetic colocalisation was found between those traits. Our study highlights the roles of individual genetic make-up in the varied antibody responses to COVID-19 vaccines and provides insights into the potential mechanisms behind breakthrough infections occurred even after the vaccination.

Original publication

DOI

10.1038/s41467-024-52890-6

Type

Journal

Nature communications

Publisher

Nature Research

Publication Date

09/10/2024

Volume

15