Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The relative contribution of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and ADAMTS5 to aggrecan degradation under oncostatin M (OSM) stimulation, the role of the ancillary domains of the aggrecanases on their ability to cleave within the chondroitin sulfate (CS)-2 region, the role of hyaluronidases (HYAL) in stimulating aggrecan release in the absence of proteolysis, and the identity of the hyaluronidase involved in OSM-mediated cartilage breakdown were investigated. Bovine articular cartilage explants were cultured in the presence of interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha) and/or OSM, or treated with trypsin and/or hyaluronidase. Aggrecan was digested with various domain-truncated isoforms of ADAMTS4 and ADAMTS5. Aggrecan and link protein degradation and release were analyzed by immunoblotting. Aggrecanase and HYAL gene expression were determined. ADAMTS4 was the most inducible aggrecanase upon cytokine stimulation, whereas ADAMTS5 was the most abundant aggrecanase. ADAMTS5 was the most active aggrecanase and was responsible for the generation of an OSM-specific degradation pattern in the CS-2 region. Its ability to cleave at the OSM-specific site adjacent to the aggrecan G3 region was enhanced by truncation of the C-terminal thrombospondin domain, but reduced by further truncation of both the spacer and cysteine-rich domains of the enzyme. OSM has the ability to mediate proteoglycan release through hyaluronan degradation, under conditions where HYAL-2 is the predominant hyaluronidase being expressed. Compared to other catabolic cytokines, OSM exhibits a unique potential at degrading the proteoglycan aggregate, by promoting early robust aggrecanolysis, primarily through the action of ADAMTS5, and hyaluronan degradation.

Original publication




Journal article


Eur cell mater

Publication Date





31 - 45


ADAM Proteins, Aggrecans, Animals, Cartilage, Articular, Cattle, Cells, Cultured, Chondroitin Sulfates, Cytokines, Electrophoresis, Polyacrylamide Gel, Hyaluronoglucosaminidase, Immunoblotting, Interleukin-1beta, Metalloproteases, Oncostatin M, Osteoarthritis, Protein Isoforms, Thrombospondins, Tissue Culture Techniques, Trypsin, Tumor Necrosis Factor-alpha