Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interest in microbubble ultrasound contrast agents as therapeutic and quantitative imaging tools has increased the need for accurate modeling of their behavior. Experiments have shown that some bubbles shrink significantly over the course of a single pulse but that the bubbles may eventually reach a stable size after many insonations. Here, it is shown from dimensional arguments that diffusion phenomena are negligible on the time scales that characterize a typical ultrasound pulse. Subsequently, a new model describing both a lipid-shedding mechanism and a nonlinear surface viscosity is developed and shown to provide a more accurate description of the observed experimental behavior.

Original publication




Journal article


J acoust soc am

Publication Date





EL180 - EL185


Computer Simulation, Contrast Media, Diffusion, Linear Models, Lipids, Microbubbles, Nonlinear Dynamics, Pressure, Surface Properties, Surface-Active Agents, Ultrasonics, Viscosity