Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of coated microbubbles in therapeutic applications, in particular drug delivery and gene therapy, has become a highly active area of research. There remain, however, some significant challenges to be overcome in order to fully realise the potential of microbubbles in these applications. In particular, the difficulty in controlling the concentration of microbubbles at a given site and in ensuring sufficient proximity between bubbles and target cells, has frequently led to disappointing results from in vivo studies. Recent work has indicated that incorporating magnetic nanoparticles into the microbubble coating may provide an effective strategy for overcoming these challenges. Further investigation to fully understand the mechanisms of enhancement and hence optimise the delivery protocols is however required and this is the aim of the present study. Results will be presented from flow phantom studies demonstrating manipulation of bubble suspensions under physiological flow conditions, from high speed imaging used to investigate the dynamic behaviour of single microbubbles and theoretical modelling conducted to support and interpret the experimental findings. Finally results demonstrating in vivo transfection in a mouse model will be presented confirming successful localisation of the transfection site.

Original publication

DOI

10.1121/1.4708110

Type

Journal article

Journal

J acoust soc am

Publication Date

04/2012

Volume

131

Addresses

Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, OX3 7DQ, UK, eleanor.stride@eng.ox.ac.uk.