Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Surfactant-coated microbubbles are utilized in a wide variety of applications, from wastewater purification to contrast agents in medical ultrasound imaging. In many of these applications, the stability of the microbubbles is crucial to their effectiveness. Controlling this, however, represents a considerable challenge. In this study, the potential for stabilizing microbubbles using solid nanoparticles adsorbed onto their surfaces was explored. A new theoretical model has been developed to describe the influence of interfacially adsorbed solid particles upon the dissolution of a gas bubble in a liquid. The aim of this work was to test experimentally the prediction of the model that the presence of the nanoparticles would inhibit gas diffusion and coalescence/disproportionation, thus increasing the life span of the bubbles. Near-monodisperse microbubbles (~100 μm diameter) were prepared using a microfluidic device and coated with a surfactant, with and without the addition of a suspension of spherical gold nanoparticles (~15 nm diameter). The experimental results confirmed the theoretical predictions that as the surface concentration of gold nanoparticles increased the bubbles underwent negligible changes in their size and size distribution over a period of 30 days at the ambient temperature and pressure. Under the same conditions, bubbles coated with the same surfactant but no nanoparticles survived only a matter of hours.

Original publication




Journal article



Publication Date





13808 - 13815


Adsorption, Gold, Metal Nanoparticles, Microbubbles, Particle Size, Pressure, Surface Properties, Surface-Active Agents, Temperature