Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Targeted therapies using the anti-EGFR antibodies panitumumab (Pmab) or cetuximab (Cmab) are currently restricted to patients with metastatic colorectal adenocarcinoma whose tumours do not show a mutation in KRAS. However, recent retrospective studies indicated that patients with tumours mutated in codon 13 of KRAS may benefit from treatment with Cmab in contrast to patients with tumours mutated in KRAS codon 12. METHODS: To study the functional impact of the subtype of KRAS mutations on the efficiency of EGFR-targeted therapies, we correlated the KRAS mutation status of 15 colorectal carcinoma cell lines with the in vitro sensitivity of these cells to Cmab/Pmab. Mutations in the potential predictive biomarkers BRAF and PIK3CA as well as protein expression of EGFR and PTEN were also determined. RESULTS: Four out of seven KRAS-mutated cell lines were characterised by the p.G13D mutation. Treatment of these cells using Cmab/Pmab induced a significant growth inhibition in contrast to cell lines showing a KRAS mutation at codon 12 or 61. Out of the eight KRAS wild-type cell lines, five were insensitive to Cmab/Pmab. These cell lines were characterised either by BRAF mutation or by absence of EGFR or PTEN protein expression. CONCLUSIONS: Since KRAS p.G13D-mutated tumour cells may respond to EGFR-targeted therapy, we suggest including subtype analysis of KRAS mutations in prospective clinical trials. In KRAS wild-type tumour cells, BRAF mutations and loss of EGFR or PTEN expression may lead to resistance to EGFR-targeted therapy and should be considered as additional negative predictive biomarkers.

Original publication




Journal article


J cancer res clin oncol

Publication Date





201 - 209


Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Antineoplastic Agents, Cell Line, Tumor, Cell Proliferation, Cetuximab, Class I Phosphatidylinositol 3-Kinases, Colorectal Neoplasms, Drug Resistance, Neoplasm, ErbB Receptors, Gene Expression Regulation, Neoplastic, Humans, Mutation, Panitumumab, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins B-raf, Proto-Oncogene Proteins p21(ras), ras Proteins