Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: To produce electrospun polymeric fibrous wound dressing patches that can release the antibiotic drug amoxicillin in a controlled manner. METHODS: Poly(D,L-lactide-co-glycolide) acid (PLGA) fibrous dressings with entrapped amoxicillin were produced by electrospinning. The morphology and successful entrapment of amoxicillin in the PLGA fibrous dressings were validated by scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The rate of drug release from the dressing patches was measured in various media for a period of 21 days using UV spectroscopy. RESULTS: PLGA fibres entrapping amoxicillin were collected for 300 s and then cut to form square patches with an average weight of 55 mg. Each dressing patch contained ~2 mg of amoxicillin. The mean fibre diameter was 2.2 ± 0.4 μm. The drug release from the PLGA dressings was found to be different for each medium during the 21-day release period with the highest and lowest concentration of drug released observed when the dressings were immersed in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. CONCLUSIONS: The release profiles obtained in this study and the well-established biocompatibility of PLGA indicate that the fibre-based patches with entrapped amoxicillin fabricated in this work are very well suited for applications in wound healing and infection control.

Original publication

DOI

10.1007/s11095-013-1035-2

Type

Journal article

Journal

Pharm res

Publication Date

07/2013

Volume

30

Pages

1926 - 1938

Keywords

Amoxicillin, Anti-Bacterial Agents, Bandages, Delayed-Action Preparations, Lactic Acid, Polyglycolic Acid, Polylactic Acid-Polyglycolic Acid Copolymer