Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

Original publication

DOI

10.1111/cmi.12085

Type

Journal article

Journal

Cellular microbiology

Publication Date

06/2013

Volume

15

Pages

891 - 909

Addresses

Program of Molecular Pathogenesis, Helen L and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York City, NY 10016, USA. jan.liese@med.uni-tuebingen.de

Keywords

Neutrophils, Skin, Animals, Mice, Inbred C57BL, Mice, Knockout, Mice, Staphylococcus aureus, Staphylococcal Skin Infections, Abscess, Disease Models, Animal, Receptors, Interleukin-1, Fluorescent Dyes, Microscopy, Signal Transduction, Neutrophil Infiltration, Photons, Host-Pathogen Interactions