Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multiple myeloma is a neoplastic disorder of plasma cells characterized by clonal proliferation within the bone marrow. One of the major clinical features of multiple myeloma is the destructive osteolytic bone disease that occurs in the majority of patients. Myeloma bone disease is associated with increased osteoclast activity and suppression of osteoblastogenesis. Bisphosphonates have been the mainstay of treatment for many years; however, their use is limited by their inability to repair existing bone loss. Therefore, research into novel approaches for the treatment of myeloma bone disease is of the utmost importance. This review will discuss the current advances in our understanding of osteoclast stimulation and osteoblast suppression mechanisms in myeloma bone disease and the treatments that are under development to target this destructive and debilitating feature of myeloma.

Original publication




Journal article


Br j pharmacol

Publication Date





3765 - 3776


Animals, Bone Density Conservation Agents, Bone Diseases, Diphosphonates, Humans, Immunologic Factors, Multiple Myeloma, Protease Inhibitors, Signal Transduction