Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cell based therapies for acute myeloid leukaemia (AML) have made significant progress in the last decade benefiting the prognosis and survival of patients with this aggressive form of leukaemia. Due to advances in haematopoietic stem cell transplantation (HSCT) and particularly the advent of reduced intensity conditioning (RIC), the scope of transplantation has now extended to those patients previously ineligible due to age and health restrictions and has been associated with a decrease in transplant related mortality. The apparent graft versus leukaemia (GvL) effect observed following HSCT demonstrates the potential of the immune system to target and eradicate AML cells. Building on previously published pre-clinical studies by ourselves and others, we are now initiating a Phase I clinical study in which lentiviral vectors are used to genetically modify AML cells to express B7.1 (CD80) and IL-2. By combining allogeneic HSCT with immunisation, using the autologous AML cells expressing B7.1 and IL-2, we hope to stimulate immune eradication of residual AML cells in poor prognosis patients that have achieved donor chimerism. In this report we describe the background to cell therapy based approaches for AML, and discuss difficulties associated with the deployment of a chronically stimulated, hence exhausted/depleted immune system to eradicate tumour cells that have already escaped immune surveillance.

Original publication




Journal article


Cancer immunol immunother

Publication Date





1017 - 1024


Acute Disease, Clinical Trials as Topic, Female, Genetic Vectors, Humans, Immunotherapy, Lentivirus, Leukemia, Myeloid, Tumor Escape