Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Murine bone marrow-derived dendritic cells (DC) can be generated by culture in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF) alone or GM-CSF in conjunction with interleukin-4 (IL-4). However, these two culture methods result in the production of heterogeneous DC populations with distinct phenotypic and stimulatory properties. In this study, we investigated the properties of DC generated under serum-free conditions in the presence or absence of IL-4 and compared their yield and phenotype to that of DC generated in the presence of fetal calf serum (FCS) (+/-IL-4). We did not observe a significant difference in the total cell yield between these four culture conditions, although the proportion of CD11c+ DC in cultures that received FCS was higher than that of their counterparts generated under serum-free conditions. Also, the four culture conditions generated CD11c+ DC with comparable levels of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86 expression, with the exception of cells cultured under serum-free conditions in the absence of IL-4, which displayed suboptimal levels of these markers. Moreover, we compared the functional and stimulatory properties of DC generated under serum-free conditions in the presence or absence of IL-4. DC cultured in the presence of IL-4 were stronger stimulators of allogeneic splenocytes in a primary mixed lymphocyte reaction (MLR) and of naive antigen-specific OT-II transgenic T cells when pulsed with the class II ovalbumin (OVA)323-339 peptide or whole OVA protein than DC cultured in the absence of IL-4. However, both DC populations displayed a similar capacity to take up fluorescein isothiocyanate (FITC)-albumin by macropinocytosis and FITC-Dextran by the mannose receptor and to secrete IL-12 in response to stimulation with lipopolysaccharide (LPS) or an agonistic anti-CD40 monoclonal antibody. Therefore, we conclude that although both DC culture methods result in the production of DC with similar functional abilities, under serum-free conditions, DC cultured in GM-CSF and IL-4 show an increased stimulatory potential over DC cultured in GM-CSF alone. This is an important consideration in the design of experiments where DC are being exploited as immunotherapeutic vaccines.

Original publication

DOI

10.1111/j.1365-3083.2005.01556.x

Type

Journal article

Journal

Scand j immunol

Publication Date

03/2005

Volume

61

Pages

251 - 259

Keywords

Animals, Antigen Presentation, Bone Marrow Cells, CD11c Antigen, Culture Media, Serum-Free, Dendritic Cells, Female, Granulocyte-Macrophage Colony-Stimulating Factor, In Vitro Techniques, Interleukin-4, Lymphocyte Culture Test, Mixed, Mice, Mice, Inbred C3H, Mice, Inbred C57BL, Mice, Transgenic, Ovalbumin, Phenotype