Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is becoming increasingly apparent that the risk of developing osteoporosis is accrued throughout the entire lifecourse, even from as early as conception. Thus early growth is associated with bone mass at peak and in older age, and risk of hip fracture. Novel findings from mother-offspring cohorts have yielded greater understanding of relationships between patterns of intrauterine and postnatal growth in the context of later bone development. Study of biological samples from these populations has helped characterize potential mechanistic underpinnings, such as epigenetic processes. Global policy has recognized the importance of early growth and nutrition to the risk of developing adult chronic noncommunicable diseases such as osteoporosis; testing of pregnancy interventions aimed at optimizing offspring bone health is now underway. It is hoped that through such programs, novel public health strategies may be established with the ultimate goal of reducing the burden of osteoporotic fracture in older age.

Original publication




Journal article


J bone miner res

Publication Date





1917 - 1925


BONE MASS, EPIGENETIC, FRACTURE, GROWTH, INTRAUTERINE, LIFECOURSE, VITAMIN D, Animals, Biological Evolution, Bone Development, Bone and Bones, Humans, Organ Size, Osteoporosis