Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The four muscle-type nicotinic acetylcholine receptor (AChR) subunits, alpha, beta, gamma, and delta, assemble into functional alpha(2)betagammadelta pentamers in the endoplasmic reticulum (ER) through a series of interdependent folding and oligomerization events. The first stable assembly intermediate is a trimer composed of alpha, beta, and gamma subunits. The formation of alphabetagamma trimers initiates a series of subunit folding and processing events that allow addition of delta subunits to form alphabetagammadelta tetramers. Subunit folding and processing continue with formation of the ligand-binding sites on the alpha subunit of alphabetagammadelta tetramers and the second alpha subunit added to assemble alpha(2)betagammadelta pentamers. AChR assembly is inefficient. Only 20-30% of synthesized subunits assemble into mature receptors in the ER, while the remaining unassembled subunits are degraded. However, the efficiency of subunit assembly can be regulated under certain conditions leading to higher AChR expression. Increased intracellular cAMP levels cause a 2- to 3-fold increase in AChR assembly efficiency and a comparable increase in surface expression. Additionally, block of ubiquitin-proteasome degradation appears to enhance AChR assembly and expression. Thus, the regulation of AChR assembly through posttranslational mechanisms is a potential therapeutic target for increasing AChR expression in diseases in which expression is compromised.

Original publication




Journal article


Ann n y acad sci

Publication Date





66 - 80


Animals, Cells, Cultured, Chaperonins, Endoplasmic Reticulum, Gene Expression, Humans, Models, Neurological, Protein Conformation, Receptors, Nicotinic