Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes.
Locati M., Deuschle U., Massardi ML., Martinez FO., Sironi M., Sozzani S., Bartfai T., Mantovani A.
The gene expression profile induced by the CC chemokine ligand (CCL) 5/RANTES in human monocytes was examined using the oligonucleotide array technology. Of 5600 transcripts examined, 42 were consistently induced by CCL5, and none were suppressed. Chemokine-inducible transcripts could be clustered in functional groups, including selected cytokines and receptors (e.g., IL-1beta, CCL2/monocyte chemotactic protein-1, and the CCL5 receptor CCR1) and molecules involved in extracellular matrix recognition and digestion (e.g., CD44 splice transcripts, urokinase-type plasminogen activator receptor, matrix metalloprotease (MMP)-9, and MMP-19). Transcript expression, confirmed by quantitative real-time PCR analysis for selected genes, was associated with protein induction for some (e.g., CCL2), but not all (e.g., IL-1beta), transcripts examined. The chemokine-induced gene profile was distinct from that activated by LPS, a prototypic phagocyte activator. Although certain transcripts were stimulated by both agonists (e.g., IL-1beta and CCL2), others were induced only by either LPS (e.g., TNF-alpha and IL-6) or CCL5 (e.g., MMP-19) or were divergently regulated (e.g., CCR1). Thus, CCL5, a prototypic CC inflammatory chemokine, activates a restricted transcriptional program in monocytes distinct from that induced by the prototypic pathogen-derived proinflammatory stimulant LPS. Chemokine-induced chemokines production could represent a novel amplification loop of leukocyte recruitment, while a subset of chemokine-inducible transcripts could be involved in monocyte extravasation and tissue invasion.