Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Cell movement is driven by a self-organized assembly of numerous actin polymers and accessory proteins surrounded by a flexible membrane. While the identity of the molecular components involved is largely known, we are still far from understanding how this enormous ensemble of molecules self-organizes into a dynamic motile cell. A great deal of work in the field has focused on the role of biochemical signaling in establishing and maintaining cellular organization. More recently, mechanical forces and feedbacks have emerged as equally important contributors to the large-scale organization of motile cells. Here we review recent progress in the field, focusing on processes related to the actin cytoskeleton and its interplay with the cell membrane.

Original publication

DOI

10.1016/j.ceb.2013.06.009

Type

Journal article

Journal

Current opinion in cell biology

Publication Date

10/2013

Volume

25

Pages

550 - 557

Addresses

Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel.

Keywords

Cell Membrane, Cytoskeleton, Animals, Humans, Actins, Signal Transduction, Cell Movement, Biomechanics