Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Chemically modified tetracyclines (CMTs 1-10) were developed as non-antibiotic inhibitors of matrix metalloproteinases (MMPs). We previously demonstrated that MMP inhibition alone is insufficient to explain the pro-apoptotic action of CMTs in osteoclast lineage cells and we have explored additional mechanisms of action. We compared the characteristics of apoptosis in RAW264.7 murine monocyte and osteoclast cultures treated with pharmacologically relevant concentrations of CMT3 or the bisphosphonate alendronate, which induces osteoclast apoptosis through inhibition of farnesyl diphosphate synthase. CMT3 induced apoptosis rapidly (2-3h), whereas alendronate-induced apoptosis was delayed (>12h). CMT3-treated cells did not accumulate unprenylated Rap1A in contrast to cells treated with alendronate. Importantly, CMT3 induced a rapid loss of mitochondrial stability in RAW264.7 cells measured by loss of Mitotracker((R)) Red fluorescence, while bongkrekic acid protected polykaryons from CMT3-induced apoptosis. Modulation of mitochondrial function is therefore a significant early action of CMT3 that promotes apoptosis in osteoclast lineage cells.

Type

Journal article

Journal

Biochemical and biophysical research communications

Publication Date

01/2008

Volume

365

Pages

840 - 845

Addresses

Section of Musculoskeletal Science, School of Medicine, University of Sheffield, UK.

Keywords

Cell Line, Mitochondria, Osteoclasts, Animals, Mice, Tetracyclines, Apoptosis, Cell Proliferation, Cell Survival, Dose-Response Relationship, Drug