Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation leading to tissue destruction and progressive loss of joint function. Here we describe two methods that can be used to assess the contribution of toll-like receptors (TLRs), and their potential ligands, to RA pathogenesis. We focus on the antigen-induced model of murine arthritis and human synovial tissue explant models. Both enable detection of TLR, and TLR ligand, expression, as well as investigation of the effect of inhibition of these molecules. Each offers a unique insight into disease; with murine models allowing kinetic analysis in live animals and explant models allowing examination of inflamed human tissue, which together can help us to dissect the role of TLRs in the onset and progression of RA.

Original publication

DOI

10.1007/978-1-4939-3335-8_22

Type

Chapter

Publication Date

01/2016

Volume

1390

Pages

351 - 381

Addresses

Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY, UK.

Keywords

Synovial Membrane, Animals, Humans, Mice, Arthritis, Rheumatoid, Disease Models, Animal, Antigens, Cytokines, Enzyme-Linked Immunosorbent Assay, Flow Cytometry, Cell Culture Techniques, Immunohistochemistry, Phenotype, Toll-Like Receptors, Real-Time Polymerase Chain Reaction