Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Human mesenchymal stem cells (hMSCs) were transfected using four retroviral pseudotypes, amphotropic murine leukemia viruses 4070 (MuLV-10A1), a modification of amphotropic pseudotype 4073 (A71G, Q74K, V139M), gibbon ape leukemia virus (GaLV), or feline endogenous virus (RD114) encoding the neomycin resistance (Neo(r)) gene and enhanced green fluorescent protein (eGFP) as genetic markers. It was observed that the MuLV4073 was the most efficient pseudotype for hMSC transfection. The proliferation and differentiation characteristics of eGFP-labelled hMSCs were not significantly different from control hMSCs. G418 selected eGFP-labelled cells were cultured for 3 weeks on two porous, commercially available calcium phosphate bioceramics, a "synthetic hydroxyapatite" and a "deproteinised bone", before implantation into NOD/SCID mice for up to 4 weeks. The eGFP-labelled hMSCs could be readily visualised by their intense green fluorescence both in vitro and in vivo. In "synthetic hydroxyapatite" implants the cells remained in a monolayer, whereas in "deproteinised bone" implants mineralised tissues were detected by histology, scanning electron microscopy and energy dispersive X-ray spectrometry. From the results, it is concluded that the use of eGFP-labelled hMSCs is an effective tool to trace the fate of hMSCs and evaluate the interactions between cells and ceramics both in vitro and in vivo. This is of great value in prospective assessments of these cell populations for use in tissue engineering applications.

Original publication

DOI

10.1016/j.biomaterials.2005.02.018

Type

Journal article

Journal

Biomaterials

Publication Date

10/2005

Volume

26

Pages

5790 - 5800

Keywords

Animals, Biocompatible Materials, Cell Differentiation, Cell Proliferation, Cells, Cultured, Ceramics, Green Fluorescent Proteins, Humans, Immunohistochemistry, Mesenchymal Stem Cells, Mice, Mice, SCID, Microscopy, Electron, Scanning, Retroviridae, Reverse Transcriptase Polymerase Chain Reaction, Spectrophotometry, Time Factors, Tissue Engineering, Transfection, X-Ray Diffraction