Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: To investigate the effect of pubertal timing, assessed in adolescence, on bone size, strength and density in men and women in early old age. DESIGN: A British birth cohort study with prospective indicators of pubertal timing based on age at menarche, clinical assessment of pubertal stage, and growth tempo from serial height measures, and bone measures derived from peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) at 60-64 years of age among 866 women and 792 men. METHODS: A first set of regression models investigated the relationships between pubertal timing and bone size, strength and density, adjusting for current height and weight, smoking and adult socioeconomic position. To make an equivalent comparison between men and women, the percentage difference in bone outcomes was calculated for a 5-year difference in age at menarche, and in men a comparison between those who were fully mature or pre-adolescent at 14.5 years. A second set of models investigated the percentage difference in bone outcomes for a 5-year difference in timing of peak height velocity (height tempo) derived from longitudinal growth modelling (Superimposition by Translation and Rotation model; SITAR). RESULTS: After adjustment for current height and weight, a 5-year increase in age at menarche was associated with an 8% [95% confidence interval (CI) -17%, 0.5%, P = 0.07) lower trabecular volumetric bone mineral density (vBMD); men who were pre-adolescent at 14.5 years had a 9%, (95% CI -14%, -4%; P = 0.001) lower trabecular vBMD compared with those who had been fully mature. Other confounders did not attenuate these estimates further. Patterns of association were similar but somewhat weaker for lumbar spine and total hip areal BMD. Age at peak height velocity was associated with even larger differences in BMD in men and women, and was negatively associated with bone size and strength. CONCLUSIONS: The association between later puberty and lower BMD persists into early old age. The 9-10% lower trabecular vBMD in later compared with earlier maturers could be clinically important given a rate of bone loss from midlife of 1-2% a year and the negative association between BMD and fracture.

Original publication

DOI

10.1093/ije/dyw131

Type

Journal article

Journal

Int j epidemiol

Publication Date

08/2016

Volume

45

Pages

1113 - 1124

Keywords

Puberty, birth cohort, bone, life course, Absorptiometry, Photon, Adolescent, Body Weight, Bone Density, Female, Fractures, Bone, Humans, Male, Middle Aged, Osteoporosis, Phenotype, Prospective Studies, Puberty, Regression Analysis, Risk Assessment, Social Class, Tomography, X-Ray Computed, United Kingdom