Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Photoacoustic (PA) imaging offers several attractive features as a biomedical imaging modality, including excellent spatial resolution and functional information such as tissue oxygenation. A key limitation, however, is the contrast to noise ratio that can be obtained from tissue depths greater than 1-2 mm. Microbubbles coated with an optically absorbing shell have been proposed as a possible contrast agent for PA imaging, offering greater signal amplification and improved biocompatibility compared to metallic nanoparticles. A theoretical description of the dynamics of a coated microbubble subject to laser irradiation has been developed previously. The aim of this study was to test the predictions of the model. Two different types of oil-coated microbubbles were fabricated and then exposed to both pulsed and continuous wave (CW) laser irradiation. Their response was characterized using ultra high-speed imaging. Although there was considerable variability across the population, good agreement was found between the experimental results and theoretical predictions in terms of the frequency and amplitude of microbubble oscillation following pulsed excitation. Under CW irradiation, highly nonlinear behavior was observed which may be of considerable interest for developing different PA imaging techniques with greatly improved contrast enhancement.

Original publication

DOI

10.1121/1.4985560

Type

Journal article

Journal

J acoust soc am

Publication Date

06/2017

Volume

141