Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The use of benchmarks to assess the performance of implants such as those used in arthroplasty surgery is a widespread practice. It provides surgeons, patients and regulatory authorities with the reassurance that implants used are safe and effective. However, it is not currently clear how or how many implants should be statistically compared with a benchmark to assess whether or not that implant is superior, equivalent, non-inferior or inferior to the performance benchmark of interest.We aim to describe the methods and sample size required to conduct a one-sample non-inferiority study of a medical device for the purposes of benchmarking.Simulation study.Simulation study of a national register of medical devices.We simulated data, with and without a non-informative competing risk, to represent an arthroplasty population and describe three methods of analysis (z-test, 1-Kaplan-Meier and competing risks) commonly used in surgical research.We evaluate the performance of each method using power, bias, root-mean-square error, coverage and CI width.1-Kaplan-Meier provides an unbiased estimate of implant net failure, which can be used to assess if a surgical device is non-inferior to an external benchmark. Small non-inferiority margins require significantly more individuals to be at risk compared with current benchmarking standards.A non-inferiority testing paradigm provides a useful framework for determining if an implant meets the required performance defined by an external benchmark. Current contemporary benchmarking standards have limited power to detect non-inferiority, and substantially larger samples sizes, in excess of 3200 procedures, are required to achieve a power greater than 60%. It is clear when benchmarking implant performance, net failure estimated using 1-KM is preferential to crude failure estimated by competing risk models.

Original publication

DOI

10.1136/bmjopen-2016-015397

Type

Journal article

Journal

BMJ open

Publication Date

28/08/2017

Volume

7

Addresses

School of Social and Community Medicine, University of Bristol, Bristol, UK.