Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NDORMS researchers and several international collaborators have been awarded funding from the Chan Zuckerberg Initiative to deliver an ancestrally diverse musculoskeletal atlas of healthy tissues.

The Chan Zuckerberg Initiative (CZI) announced $28 million in grants to support the inclusion of data from tissue samples from ancestrally diverse donors in the Human Cell Atlas (HCA). A total of 16 teams of researchers were successful – including single-cell biologists, tissue experts, computational biologists, and community-engaged researchers, who represent 31 different countries.

The "Ancestrally Inclusive Musculoskeletal Atlas Network" is receiving $2m in funding. The network is a global collaboration between multiple research institutes – the University of Oxford (UK), University of Bristol (UK), African Institute of Biomedical Science and Technology (Zimbabwe), University of Cambridge (UK), University of Southampton (UK) – with tissue collections spanning India, Zimbabwe, Turkey, The Gambia, Oman and Argentina.

The musculoskeletal system accounts for over one-third of adult body mass and is essential for locomotion, fine motor control and independence. A cellular 'road-map' of ancestrally inclusive healthy musculoskeletal tissues will provide fundamental metrics to define the diverse tissues of the musculoskeletal system.

Sarah Snelling, Associate Professor at NDORMS and chief investigator of the Ancestrally Inclusive Musculoskeletal Atlas Network says, "The HCA is a generational resource that, when combined with future disease datasets, will accelerate our understanding of disease pathogenesis, revolutionise drug discovery and pave the way for the cellular evaluation of therapeutic strategies. It is vital that such a public good is representative of, and available to all global populations.

"To create effective treatments and cures for all people, the biomedical community must work to increase representation in scientific research. About 80 percent of current genomic data is from people of European ancestry, which must change," said CZI Program Manager for Single-Cell Biology, Norbert Tavares. "The Ancestry Networks for the Human Cell Atlas will bring a much-needed perspective to single-cell research and provide key insights into how ancestry impacts healthy and disease states and has the potential to inform the path to treatments."

Mathew Baldwin, NIHR clinical lecturer, who is leading clinical aspects of the grant at NDORMS said, "Engagement of diverse populations for biospecimen donation is central to the delivery and future refinement of an ancestrally diverse cell atlas. Our local teams have well-established community relationships that will help ensure tissue donation is respectful of local culture and customs. As our network progressively expands we aim to facilitate the participation of donors across the full spectrum of under-represented communities." Local relationships with donors are particularly enhanced through the critical involvement of the SAMSON network (Gregson, Bristol; Ward, Southampton).

A flagship initiative of this network is to empower the data analysis within the low and middle-income countries where tissue is being collected. The goal is to "train the trainers", helping to establish global centres of genomic research within these ancestrally under-represented countries. Co-Principal Investigators Dr Adam Cribbs and Dr David Sims (Oxford), alongside Prof. Collen Masimirembwa at the African Institute of Biomedical Science and technology (AiBST), the leading biotechnology institute in Zimbabwe, will deliver a unique training platform focused on single-cell sequencing analysis. This will complement AIBST's already established two-year master's degree program in genomics, and will provide a platform for students and scientists to analyse single-cell data generated at each of the partner sites. Training will encompass the entire pipeline of single cell studies with Mathew Baldwin, alongside Vikas Khanduja (Cambridge) delivering clinical training and exploring clinical and infrastructure barriers to tissue donation, and Sarah Snelling and Christopher Buckley supporting laboratory and relevant musculoskeletal biology training across all sites.

Adam Cribbs, group leader in Systems Biology at NDORMS and computational lead for the project says, "Developing computational infrastructure and support across our network will be key to empowering the future generation of scientists. This will lead to an increased representation of ancestrally diverse samples within the Human Cell Atlas project."

The team from NDORMS is working alongside international Co-Principal Investigators:

David SimsVikas KhandujaCelia GregsonKate WardCollen Masimirembwa

Similar stories

Professor Michael Dustin appointed new Chair in Molecular Immunology

A generous gift from the Kennedy Trust for Rheumatology Research has enabled the creation of a new Chair in Molecular Immunology at the University of Oxford.

Empowering data science for single-cell analysis in Zimbabwe

An innovative computational biology training module was launched in November 2022 at the African Institute of Biomedical Science and Technology (AiBST) in Harare, Zimbabwe, where MSc students were trained in single-cell RNA sequencing data analysis.

T-cell coreceptors are well endowed—with kinases!

The kinase occupancy of CD4 and CD8 coreceptors is high, according to a new study published in PNAS.

Two prestigious Hunterian Professorships awarded to NDORMS researchers

Conrad Harrison and Tom Layton have both been awarded Hunterian Professorships for 2022 by the Royal College of Surgeons of England

Adalimumab is found to be a cost-effective treatment for early-stage Dupuytren’s disease

Researchers at the Kennedy Institute of Rheumatology and Oxford Population Health’s Health Economics Research Centre have found that anti-TNF treatment (adalimumab) is likely to be a cost-effective treatment for people affected by early-stage Dupuytren’s disease.

Patients like me

What can patients learn from the experiences of people like them who’ve already had a hip replacement? A new tool called ‘Patients like me’ helps answer some of the questions about pain, complications and how long the prosthesis might last.