Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research at the Kennedy Institute reveals sub-populations of stromal cells with distinct functions in human fibrotic disease. These findings could inform development of more specific therapies with fewer off-target effects.

Dupuytren’s disease hand examination.
The study used human fibrotic tissue from Dupuytren’s disease, a common fibrotic condition of the hand

In their study, published in Nature Communications, the authors utilised single cell technologies to map different types of stromal cells and their relationship to each other in human tissues affected by fibrosis. Their approach revealed several distinct populations of stromal cells with different functional roles.

Fibrotic disorders arise from poorly regulated tissue repair processes, leading to a build-up of collagen and scar tissue that impairs organ function. These diseases are some of the most devastating and poorly treated conditions in the Western world, yet effective therapeutics are often lacking. 

Lead author Jagdeep Nanchahal said: "Animal models fail to replicate many aspects of human fibrosis and there remains limited availability of well-characterised patient samples at developing stages of disease. Our study exclusively used human fibrotic tissue from Dupuytren's disease, a common fibrotic condition of the hand, to profile an entire human fibrotic ecosystem at single cell resolution."


"We were able to build a single cell atlas of human fibrosis-promoting stromal cells and describe functionally distinct types and states. This division of labour between fibrotic stromal cells will allow us to form a powerful translational resource to help inform development of treatments and represents an exciting avenue for future research," he concluded.

Similar stories

NIHR Fellowships awarded to NDORMS researchers

Congratulations to Eileen Morrow and Mae Chester-Jones who have received NIHR Doctoral Fellowships

ORUK Early Career Research Fellowship awarded to NDORMS researcher

Congratulations to Jack Tu who has been awarded an Orthopaedic Research UK Early Career Research Fellowship to explore the cause of knee pain after total knee replacement.

OCTRU - delivering answers to important clinical questions

The Oxford Clinical Trials Research Unit (OCTRU) has received NIHR benchmarking results and offers excellent value for money according to the report

Unhelpful thoughts about fracture symptoms hinder recovery

The importance of mindsets and feelings about fracture symptoms have been shown to be a key factor in recovery of musculoskeletal conditions.

Fat tissues can play a protective role against inflammation in the intestine

A new study in The EMBO Journal has revealed how fat tissues might provide a protective role in intestinal inflammation opening new lines of research into the treatment of inflammatory bowel diseases.

NDORMS researchers awarded Sir Henry Wellcome Fellowships

Kennedy Institute researchers Mariana Borsa and Edward Jenkins have both been awarded Sir Henry Wellcome Postdoctoral Fellowships, which give recently qualified postdoctoral researchers the opportunity to start independent research careers.