Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research from Dr Richard Williams’ group at the Kennedy Institute suggests a route for the development of more selective – and effective – therapies for immune-mediated inflammatory disease.

Artists representation of T lymphoyctes. Signalling through TNFR2 receptor maintains Foxp3 expression in suppressor T lymphocytes.

Anti-TNF therapy is used to treat millions of patients worldwide for rheumatoid arthritis and other immune-mediated inflammatory diseases (IMIDs). Current anti-TNF therapies block both receptors for TNF - TNFR1 and TNFR2. However, new work from Dr Richard Williams’ lab suggests the development of therapies that specifically block TNFR1 could be advantageous for treating IMIDs.

The Williams lab found that TNFR2 plays a role in limiting the severity and duration of arthritis in animal models. Signalling through TNFR2 prevented methylation of the gene encoding Foxp3, a key protein for maintaining suppressor T regulatory cells that promote immune homeostasis.  

Richard said: “This research has been a great team effort and the results exemplify the complexities of cytokine biology. Thus, one molecule, TNF, can have completely opposing effects, depending on which receptor it acts upon.”

Although biologics targeting TNF have improved the lives of millions of people living with IMIDs, not all patients respond adequately to therapy. The new work suggests an approach to develop more selective therapies to increase efficacy and reduce side effects. 

Richard explains, “This research is likely to further stimulate the clinical development of novel biologics for IMIDs that specifically target TNFR1, whilst sparing TNFR2 signalling. In addition, the finding that TNFR2 controls the activity of regulatory T cells may have implications for cancer therapy as these cells are thought to contribute to immunosuppression within the tumour microenvironment.” 

The work was supported by funding from the Chang Gung Memorial Hospital and the Ministry of Science and Technology, Taiwan. 

Similar stories

Professor Sir Gordon Duff receives Honorary Senior Fellowship at NDORMS

Professor Sir Gordon Duff has been awarded an Honorary Senior Fellowship at NDORMS.

Oxford researchers call for an urgent re-evaluation of “weak” opioid safety profile

A new study associates dispensation doses of tramadol with increased risk of mortality, cardiovascular events, and fractures compared to the use of codeine to treat pain.

New therapeutic targets identified to treat inflammatory bowel disease

Millions of patients with ulcerative colitis or Crohn’s disease, collectively known as inflammatory bowel disease (IBD), are given fresh hope as a new study shows why some of them do not respond to current treatments.

Afsie Sabokbar wins Lifetime Achievement at Teaching Excellence Awards

Director of Graduate Studies Afsie Sabokbar wins Lifetime Achievement at 2021 Teaching Excellence Awards.

NDORMS staff recognised in the 2021 Teaching Excellence Awards

Director of Graduate Studies Afsie Sabokbar, Associate Professor Stephanie Dakin and Graduate Studies Officer Samuel Burnell were all winners in the Teaching Excellence Awards.

Five ways to take action for your bone health

On World Osteoporosis Day, the International Osteoporosis Foundation (IOF), the world’s largest non-governmental organisation in the bone field, urges action for osteoporosis and fracture prevention.