Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

New research from Dr Richard Williams’ group at the Kennedy Institute suggests a route for the development of more selective – and effective – therapies for immune-mediated inflammatory disease.

Artists representation of T lymphoyctes. Signalling through TNFR2 receptor maintains Foxp3 expression in suppressor T lymphocytes.

Anti-TNF therapy is used to treat millions of patients worldwide for rheumatoid arthritis and other immune-mediated inflammatory diseases (IMIDs). Current anti-TNF therapies block both receptors for TNF - TNFR1 and TNFR2. However, new work from Dr Richard Williams’ lab suggests the development of therapies that specifically block TNFR1 could be advantageous for treating IMIDs.

The Williams lab found that TNFR2 plays a role in limiting the severity and duration of arthritis in animal models. Signalling through TNFR2 prevented methylation of the gene encoding Foxp3, a key protein for maintaining suppressor T regulatory cells that promote immune homeostasis.  

Richard said: “This research has been a great team effort and the results exemplify the complexities of cytokine biology. Thus, one molecule, TNF, can have completely opposing effects, depending on which receptor it acts upon.”

Although biologics targeting TNF have improved the lives of millions of people living with IMIDs, not all patients respond adequately to therapy. The new work suggests an approach to develop more selective therapies to increase efficacy and reduce side effects. 

Richard explains, “This research is likely to further stimulate the clinical development of novel biologics for IMIDs that specifically target TNFR1, whilst sparing TNFR2 signalling. In addition, the finding that TNFR2 controls the activity of regulatory T cells may have implications for cancer therapy as these cells are thought to contribute to immunosuppression within the tumour microenvironment.” 

The work was supported by funding from the Chang Gung Memorial Hospital and the Ministry of Science and Technology, Taiwan. 

Similar stories

Patient and public involvement in Rheumatology research – embracing the wave of change

On launching the new OPEN ARMS PPI group in Oxford, Dr. Laura Coates explored the patient and public involvement (PPI) models of three academic centres in the UK to show how it benefits researchers, clinicians, and patients alike.

Neutrophil molecular wiring revealed: transcriptional blueprint of short-lived cells

Researchers publish the first blueprint of transcriptional factors that control neutrophil-driven inflammation in Nature Immunology.

NDORMS joins research partnership to understand links between overlapping long-term conditions

The links between different long-term health conditions will be explored in new research funded with a £2.5million grant from the Medical Research Council.

NDORMS researchers awarded grant for study on the effects of COVID-19 vaccines on long COVID

A team of NDORMS researchers including Doctor Annika Jödicke and Doctor Victoria Strauss have been awarded NIHR funding to carry out a study into the effects of different COVID-19 vaccines on long COVID.

New therapeutic targets identified in the treatment of psoriatic arthritis

Researchers identify two inflammatory-driving proteins, osteopontin and CCL2, highly expressed in psoriatic arthritis joints.

Researchers show the role of cilia in cartilage health

New research shows that disrupting primary cilia in juvenile, adolescent and early adulthood in cartilage stops it maturing correctly, making it more prone to thinning and the potential for osteoarthritis (OA) in later life.