Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Early identification of colorectal cancer is an unresolved challenge and the predictive value of single symptoms is limited. We evaluated the performance of QCancer (Colorectal) prediction model for predicting the absolute risk of colorectal cancer in an independent UK cohort of patients from general practice records. METHODS: A total of 2.1 million patients registered with a general practice surgery between 01 January 2000 and 30 June 2008, aged 30-84 years (3.7 million person-years) with 3712 colorectal cancer cases were included in the analysis. Colorectal cancer was defined as incident diagnosis of colorectal cancer during the 2 years after study entry. RESULTS: The results from this independent and external validation of QCancer (Colorectal) prediction model demonstrated good performance data on a large cohort of general practice patients. QCancer (Colorectal) had very good discrimination with an area under the ROC curve of 0.92 (women) and 0.91 (men), and explained 68% (women) and 66% (men) of the variation. QCancer (Colorectal) was well calibrated across all tenths of risk and over all age ranges with predicted risks closely matching observed risks. CONCLUSION: QCancer (Colorectal) appears to be a useful tool for identifying undetected cases of undiagnosed colorectal cancer in primary care in the United Kingdom.

Original publication




Journal article


Br j cancer

Publication Date





260 - 265


Adult, Aged, Aged, 80 and over, Cohort Studies, Colorectal Neoplasms, Early Detection of Cancer, Female, General Practice, Humans, Male, Middle Aged, Predictive Value of Tests, Reproducibility of Results, Risk Factors, United Kingdom