Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Maternal nutrition is a potentially important determinant of intrauterine skeletal development. Previous studies have examined the effects of individual nutrients, but the pattern of food consumption may be of greater relevance. We therefore examined the relationship between maternal dietary pattern during pregnancy and bone mass of the offspring at 9 yr of age. We studied 198 pregnant women 17-43 yr of age and their offspring at 9 yr of age. Dietary pattern was assessed using principal component analysis from a validated food frequency questionnaire. The offspring underwent measurements of bone mass using DXA at 9 yr of age. A high prudent diet score was characterized by elevated intakes of fruit, vegetables, and wholemeal bread, rice, and pasta and low intakes of processed foods. Higher prudent diet score in late pregnancy was associated with greater (p < 0.001) whole body and lumbar spine BMC and areal BMD in the offspring, after adjustment for sex, socioeconomic status, height, arm circumference, maternal smoking, and vitamin D status. Associations with prudent diet score in early pregnancy were weaker and nonsignificant. We conclude that dietary patterns consistent with current advice for healthy eating during pregnancy are associated with greater bone size and BMD in the offspring at 9 yr of age.

Original publication




Journal article


Journal of bone and mineral research : the official journal of the american society for bone and mineral research

Publication Date





663 - 668


The MRC Epidemiology Resource Centre, University of Southampton, Southampton General Hospital, Southampton, Untied Kingdom.


Bone and Bones, Humans, Prenatal Exposure Delayed Effects, Anthropometry, Organ Size, Diet, Confidence Intervals, Regression Analysis, Longitudinal Studies, Feeding Behavior, Life Style, Bone Development, Pregnancy, Adult, Child, Female, Maternal Nutritional Physiological Phenomena