Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is increasing recognition that decision modelling is central to health technology assessment and, in particular, to analyses to support formal decision making regarding the funding of the use of new technologies. In part, the key role of decision analysis stems from the need to handle multiple sources of uncertainty in the available evidence. The use of probabilistic decision analysis is a means of reflecting the parameter uncertainty in models and presenting this in a comprehensible manner to decision makers. In this article, we demonstrate the potential role of probabilistic models using the case study of total hip replacement surgery.A cost-effectiveness model was constructed to compare the Charnley and Spectron hip prostheses in terms of lifetime costs and quality-adjusted life-years (QALYs). Revision rates were estimated from the Swedish National Total Hip Arthroplasty Register (1992-2000); the risk of revision with the Spectron prosthesis relative to the Charnley prosthesis was 0.67 (95% confidence interval [CI] 0.32, 1.02) for early revisions and 0.26 (95% CI 0.07, 0.46) for late revisions. This lower revision risk resulted in the Spectron generating more QALYs than the Charnley prosthesis. Based on mean costs and QALYs, the Spectron results in cost savings in younger patients, and generates incremental cost-effectiveness ratios of between pound1000 and pound16 000 in older patient groups. The probabilistic results from the model indicated that, if it is assumed that decision makers are willing to pay up to pound20 000 per additional QALY, the probability of the Spectron being the more cost-effective prosthesis ranged between 70% and 100%, depending on the age and sex of the patient.This article looks at the application of probabilistic decision modelling using total hip replacement as a case study to emphasis the need for decision models to quantify all sources of parameter uncertainty and to clearly distinguish parameter uncertainty from subgroup heterogeneity.

Original publication

DOI

10.2165/00148365-200403020-00004

Type

Journal article

Journal

Applied health economics and health policy

Publication Date

01/2004

Volume

3

Pages

79 - 89

Addresses

Health Economics Research Centre, Department of Public Health, University of Oxford, Old Road Campus, Headington, Oxford, UK. andrew.briggs@dphpc.ox.ac.uk

Keywords

Humans, Arthroplasty, Replacement, Hip, Reoperation, Markov Chains, Survival Analysis, Decision Support Techniques, Quality-Adjusted Life Years, Adult, Aged, Aged, 80 and over, Middle Aged, Cost-Benefit Analysis, State Medicine, Technology Assessment, Biomedical, Female, Male, United Kingdom