Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bone morphogenetic proteins (BMPs) are members to the transforming growth factor-beta superfamily. They induce ectopic bone formation in rat and are pleiotropic initiators of inducible osteogenic precursor cells. A lot of reports have studied the presence of BMPs and their effects on bone marker expression in many different cell lines, however none describe the regulation of BMP3 by different factors and expression conditions. When a human bone marrow stromal cell (HBMSC) culture was treated simultaneously with 1,25(OH)2D3 (10(-8) M) and BMP3 (2.5 ng/ml), the total osteocalcin content in the cell layer and in the culture medium was higher than when the culture was treated with either factor alone (162%). To elucidate this synergistic activity, Northern blot analysis was done to study the effect of 1,25(OH)2D3 on BMP3 mRNA expression. Several human cell lines (MNNG, U-2OS, MG-63, KHOS, TE85, HOS) and HBMSC were treated by 1,25(OH)2D3 (10(-8) M for 24 h). Purified mRNA from treated and untreated cells were denatured using glyoxal and dimethylsulfoxide, and were fractionated on a 1% agarose gel. After electrophoresis, RNA were blotted onto a nylon membrane and incubated with 32P-labeled BMP3 and GAPDH riboprobes. Northern blot analysis revealed that, the BMP3 mRNA level was increased in a few cell lines (MG-63, HBMSC, HOS) after the addition of 1,25(OH)2D3 when compared to the untreated cells (127%+/-1; 130.5%+/-19.5; 207%+/-14). An higher stimulation was observed in HBMSC primary culture when compared to differentiated HBMSC. In view of these results, we now investigate the following hypothesis: does the BMP3 promoter exhibit the vitamin D receptor response like the osteocalcin gene?


Journal article


J cell biochem

Publication Date





11 - 19


Bone Morphogenetic Protein 3, Bone Morphogenetic Proteins, Calcitriol, Cell Line, Cycloheximide, Dactinomycin, Gene Expression Regulation, Glyceraldehyde-3-Phosphate Dehydrogenases, Humans, RNA, Messenger