Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The pathogenesis of ulcerative colitis (UC) is associated with severe inflammation, damaged colonic barriers, increased oxidative stress, and intestinal dysbiosis. The majority of current medications strive to alleviate inflammation but fail to target additional disease pathologies. Addressing multiple symptoms using a single 'magic bullet' remains a challenge. To overcome this, a smart epigallocatechin-3-gallate (EGCG)-loaded silk fibroin-based nanoparticle (NP) with the surface functionalization of antimicrobial peptides (Cathelicidin-BF, CBF) was constructed, which were internalized by Colon-26 cells and RAW 264.7 macrophages with high efficiencies. These CBF-EGCG-NPs efficiently restored colonic epithelial barriers by relieving oxidative stress and promoting epithelium migration. They also alleviated immune responses through the downregulation of pro-inflammatory factors, upregulation of anti-inflammatory factors, M2 macrophage polarization, and lipopolysaccharide (LPS) elimination. Interestingly, oral administration of hydrogel (chitosan/alginate)-embedding CBF-EGCG-NPs could not only retard progression and treat UC, but also modulate intestinal microbiota by increasing their overall diversity and richness and augmenting the abundance of beneficial bacteria (e.g., Firmicutes and Lactobacillaceae). Our work provides a "many birds with one stone" strategy for addressing UC symptoms using a single NP-based oral platform that targets immune microenvironment modulation, LPS clearance, and microbial remodeling.

Original publication

DOI

10.1016/j.jconrel.2022.05.025

Type

Journal article

Journal

J control release

Publication Date

14/05/2022

Keywords

Antimicrobial peptide, Inflammatory microenvironment, Microbial remodeling, Oral nanoparticle, Ulcerative colitis