Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Animal models suggest a vasomotor role for the B1 kinin receptor in cardiovascular disease states. In patients with heart failure treated with angiotensin-converting enzyme inhibition (ACEi), or combined B1/B2 receptor antagonism, but not B2 receptor antagonism alone, causes vasoconstriction. However, B1 agonism has no effect on vasomotor or fibrinolytic function. Findings from transgenic animals lacking the B2 receptor suggest that these conflicting data may be explained by cross-talk between B1 and B2 receptors. We hypothesized that B1 stimulation causes vasodilatation and tissue plasminogen activator release in the human forearm when B2 receptor signaling is inhibited. Forearm blood flow was measured in 16 patients with heart failure receiving ACEi. In double-blinded crossover studies, intrabrachial Lys-[Leu8]-des-Arg9-bradykinin (B1 antagonist), lys-des-Arg9-bradykinin (B1 agonist), bradykinin (B2 agonist), and sodium nitroprusside (endothelium-independent vasodilator) were infused alone or with HOE-140 (B2 antagonist). HOE-140 did not affect basal vascular tone or t-PA release, but it abolished bradykinin-induced vasodilatation and t-PA release (P < 0.0001). Blood flow and t-PA release were unaffected by B1 agonism or antagonism in the presence and absence HOE-140. Our findings do not support a role for crosstalk between the B1 and B2 kinin receptors in the human peripheral circulation.

Original publication




Journal article


J cardiovasc pharmacol

Publication Date





438 - 444


Adult, Aged, Angiotensin-Converting Enzyme Inhibitors, Blood Pressure, Bradykinin, Bradykinin B1 Receptor Antagonists, Bradykinin B2 Receptor Antagonists, Cross-Over Studies, Double-Blind Method, Female, Heart Failure, Humans, Infusions, Intra-Arterial, Kallidin, Middle Aged, Nitroprusside, Receptor, Bradykinin B1, Receptor, Bradykinin B2, Regional Blood Flow, Tissue Plasminogen Activator, Vasodilation