Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is increasing interest in the use of microbubble contrast agents for quantitative imaging applications such as perfusion and blood pressure measurement. The response of a microbubble to ultrasound excitation is, however, extremely sensitive to its size, the properties of its coating and the characteristics of the sound field and surrounding environment. Hence the results of microbubble characterization experiments can be significantly affected by experimental uncertainties, and this can limit their utility in predictive modelling. The aim of this study was to attempt to quantify these uncertainties and their influence upon measured microbubble characteristics. Estimates for the parameters characterizing the microbubble coating were obtained by fitting model data to numerical simulations of microbubble dynamics. The effect of uncertainty in different experimental parameters was gauged by modifying the relevant input values to the fitting process. The results indicate that even the minimum expected uncertainty in, for example, measurements of microbubble radius using conventional optical microscopy, leads to variations in the estimated coating parameters of ∼20%. This should be taken into account in designing microbubble characterization experiments and in the use of data obtained from them.

Original publication

DOI

10.1016/j.ultrasmedbio.2016.01.005

Type

Journal article

Journal

Ultrasound in medicine & biology

Publication Date

06/2016

Volume

42

Pages

1412 - 1418

Addresses

Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford, UK.

Keywords

Microscopy, Uncertainty, Microbubbles, Surface Properties, Ultrasonics, Computer Simulation